Adaptation method based on HMM composition and EM algorithm
نویسندگان
چکیده
A method for adapting HMMs to additive noise and multiplicative distortion at the same time is proposed. This method first creates a noise HMM for additive noise, then composes HMMs for noisy and distorted speech data from this HMM and speech HMMs so that these composed HMMs become the functions of signal-to-noise (SIN) ratio and multiplicative distortion. S/N ratio and multiplicative distortion are estimated by maximizing the likelihood of the HMMs to the input speech. To achieve this, we propose a new method that divides the maximization process into estimation of S/N ratio and estimation of cepst" bias. The S/N ratio is estimated using the parallel model method. The cepstrum bias is estimated using the EM algorithm. To evaluate this method, two experiments in terms of phoneme recognition and connected digit recognition are performed. The guarantee of convergence of this algorithm is also discussed.
منابع مشابه
Abnormality Detection in a Landing Operation Using Hidden Markov Model
The air transport industry is seeking to manage risks in air travels. Its main objective is to detect abnormal behaviors in various flight conditions. The current methods have some limitations and are based on studying the risks and measuring the effective parameters. These parameters do not remove the dependency of a flight process on the time and human decisions. In this paper, we used an HMM...
متن کاملSpeech enhancement based on hidden Markov model using sparse code shrinkage
This paper presents a new hidden Markov model-based (HMM-based) speech enhancement framework based on the independent component analysis (ICA). We propose analytical procedures for training clean speech and noise models by the Baum re-estimation algorithm and present a Maximum a posterior (MAP) estimator based on Laplace-Gaussian (for clean speech and noise respectively) combination in the HMM ...
متن کاملUnsupervised learning of HMM topology for text-dependent speaker verification
Usually, text-dependent speaker verification can achieve better performance than text-independent system because of the constraint that the enrollment and testing utterance share the same phonetic content. However, the enrollment data for text-dependent system usually is very limited. Expectation Maximization(EM) training of HMM will suffer from noisy estimation because of limited enrollment. A...
متن کاملSpeech-to-lip movement synthesis based on the EM algorithm using audio-visual HMMs
This paper proposes a method to re-estimate output visual parameters for speech-to-lip movement synthesis using audio-visual Hidden Markov Models(HMMs) under the Expectation-Maximization(EM) algorithm. In the conventional methods for speech-to-lip movement synthesis, there is a synthesis method estimating a visual parameter sequence through the Viterbi alignment of an input acoustic speech sign...
متن کاملModel Adaptation Based on Hmm Decomposition for Reverberant Speech Recognition
The performance of a speech recognizer is degraded drastically in reverberant environments. We proposed a novel algorithm which can model an observation signal by composition of HMMs of clean speech, noise and an acoustic transfer function(l]. However, how to estimate HMM parameters of the acoustic transfer function is a remaining serious problem. In our previous paperll], we measured real impu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1996